Atmospheric fate of prenol, a second-generation biofuel, in simulation chambers: Insights into kinetics and gaseous / particulate oxidation products formation

┥┙

Π

0

nta

2

D

S

U

M

0

Ins

Concl

¹Laboratoire de Physico-Chimie de l'Atmosphère (LPCA), Université du Littoral Côte d'Opale, Dunkerque, France ²Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, Dunkerque, France ³IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France

Combustion of fossil fuels contribute Find alternative green fuels to air pollution and climate change

CHARME characteristics LPCA Localization (Dunkerque- France) Stainless steel 304 L Material (electropolished) Cylindrical Shape

Study the Reactivity of Prenol in Atmospheric Simulation Chambers

		CHARIVIE			onitoring	Shape Cuboid
- Tempera	re (293 ± 2) K	Determination of the aerosol siz	n Oxidation products identification			Temperature(231-453) KVolume0.6 m³
Volum	9.2 m ³	distribution and mass concentration				
Pressu	re 0.1 mbar - P _{atmospheric}			S		Pressure P _{atmospheric}
Kinetic Studies				Aerosol Formation Potential		
					Concentration (#/cm ³) (b) $500 =$	Concentration (#/c
Oxidant	ОН	03	NO ₃	(a)	$- 3.0 \times 10^5$ 400^-	- 47,08
Rate coefficient (cm ³ molecule ⁻¹ s ⁻¹)	(1.48 ± 0.10) × 10 ⁻¹⁰	(3.30 ± 0.14) × 10 ⁻¹⁶	$(3.20 \pm 0.1) \times 10^{-12}$	ameter (nm)	-2.6×10^{5} ($\underbrace{\text{m}}_{2.1 \times 10^{5}}$) 300^{-1}	- 40,35 - 33,63 - 26,90 - 20,18
Lifetime (hours)	1 a	0.3 ^b	0.4 ^c		$- 1.3 \times 10^{5}$ $- 8.6 \times 10^{4}$ $- 4.3 \times 10^{4}$ $- 100$ $-$	• - 13,45 - 6,725
Calculated using [OH] = 2×10^6 molecule.cm ⁻³ (Hein et al., 1997). (e)Arrhenius equation in the range 273 – 353 K.				0 10 20 30 40 50 60 70 8 Time (mins	- 0.0 0 80 90 100 110 120 130 0	20 40 Time (min)
Calculated using $[O_3] = 2.46 \times 10^{12}$ molecule.cm ⁻³ (100 ppbv; polluted area) (Lin et al., 2001). Arrhenius equation in the range 283 – 353 K.				Time Profile of the aerosol formation from the reaction prenol + O_3 (a) and prenol + NO_3 (b)		
alculated using $[NO_3] = 2 \times 10^8$ molecul	e.cm ⁻³ (Brown et al., Chem. Soc. Rev., 2012).			Maximum aerosol	formation yields from the reaction prenol + (O_3 is $\approx 3\%$ and from prenol + NO ₃ is $\approx 1\%$
Fast removal from the atmosphere!				These yields are much lower than those formed from the OH reaction of benzene and xylene and toluene		
Yiel	ds of Identified Gaseous O	xidation Products	(released from gasolir	ne) with maximum SOA yields of $\approx 10 \%$, 17 Zhang et al., 2019; Deepchandra	% and 11 % respectively (Borrás et al., 20 et al., 2023)	

Prenol is a good alternative to the use of fossil fuels with respect to its potential to form secondary organic aerosols

• Major products are carbonyl compounds which are directly removed from the atmosphere through photolysis and/or reaction with atmospheric oxidants such as OH radicals

• The use of fossil fuels is a source of benzene in the atmosphere which reacts with OH and leads to the formation of phenol, formic acid, and tropospheric ozone

- Prenol is fastly removed from the atmosphere by oxidants (OH, O₃ and NO₃) during both night and day, with lifetimes between 0.3 and 1 hour
- Low aerosol formation yields in the atmosphere from prenol oxidation by $O_3 (\approx 3 \%)$ or $NO_3 (\approx 1 \%)$
- Acetone, Formaldehyde and Glycolaldehyde common major products for the reaction between prenol and the different oxidants (OH, O_3 and NO_3) which are also fastly removed from the atmosphere

Based on our results, prenol (a second generation biofuel) is a good alternative to the use of fossil fuels for transport !!!

Acknowledgement

This work is part of the Labex CaPPA project funded by the ANR through the PIA under contract ANR-11-LABX-0005-01 and the CPER ECRIN project, funded by the Hauts-de-France Regional Council. References

- Brown et al. (2012), Nighttime radical observations and chemistry, Chemical Society Reviews, 41, 6405-6447.
- Deepchandra Srivastava (2023), Characterization of products formed from the oxidation of toluene and m-xylene with varying Nox and OH • exposure, Chemosphere, 334, 139002.
- Esther Borrás et al. (2012): Secondary organic aerosol formation from the photo-oxidation of benzene, Atmospheric Environment, 47, 154-163
- Hein et al. (1997), An inverse modeling approach to investigate the global atmospheric methane cycle, *Global Biochemical Cycles*, 11, 43-76
- Lin et al. (2001), Trends in exceedances of the ozone air quality standard in the continental United States, 1980–1998, Atmospheric environment, 19, 3217-3228.
- Zhang et al. (2019), Secondary organic aerosol formation from OH-initiated oxidation of m-xylene: effects of relative humidity on yield and chemical composition, Atmos. Chem. Phys., 19, 15007-15021.